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Abstract — A parametrized six-tield vanational principle for micropolar compressible linear elas-
ticity is presented. The primary variables are symmetric and skew stresses. symmetric and skew
strains, micropolar rotations and displacements. The governing functional is charactenized by six
free parameters. The connection between this formulation and the functionals with relaxed stress
symmetry and independent rotations ficlds proposed by Reissner and Hughes-Brezzi for classical
{non-polar) linear elasticity is examined. [t is shown that the Hughes-Brezzi functionals are special
cases of the parametrized functional but that the Reissner functionals are not. The former may be
interpreted as a regularization (consistent stabilization) of the Reissner functionals that places them
within the framework of micropolar elasticity. An eight-field parametrized principle that accounts
for couple stresses is brictly described in the Appendix.

1. GOVERNING EQUATIONS

Consider @ compressible lincar micropolar body under static loading that occupics the
volume ¥, The body is bounded by the surface S, with outward external normal #,. The
surface is decomposed into 805, U S, Displacements are preseribed on Sy while surface
tractions are prescribed on S,. Rectangular Cartesian coordinates will be used throughout.
The four unknown volume ficlds are the displacement vector w,, the infinitesimal strain
tensor y,. the stress tensor t,, and the (antisymmetric) microrotation tensor @, The stress
and strain tensors are not symmetric. The symmetric and antisymmetric parts of the stress
tensor are a,, and s, respectively. The symmetric and antisymmetric parts of the strain
tensor are ¢, and ¢, respectively. The antisymmetrie tensor of infinitesimal rotations (also
called macrorotations) s .

The problem data include : the body force ficld b, per unit of volume in ¥, body couples
¢, per unit volume in ¥, prescribed displacements  on S, and prescribed surfuce tractions
£, onS,.

The governing ficld equations for an isotropic micropolar continuum without couple
stresses are written below following Novacki (1970), with some notational changes. In the
following equations, d,,is the Kronecker delta. ¢, denotes the permutator symbol (g, = + 1
or — | if 4, j, k are distinct and form a positive or negative permutation, respectively, of 1,
2, 3;else g, =0), Aand g are the Lumé coeflicients, and x is a micropolar modulus that
relates the antisymmetric tensors ¢, and s, In addition, a comma denotes the partial
derivative with respect to the space coordinate whose index follows.

Strain -displacement and rotation -displacement equations in V'

T=u,—=0,=¢,4+w,~0,=¢,+¢,
w, = g(u,_,——u,',),
ey = 2 +7) = My ),

fa —w } =
(/)l/ = 2(/:/_ //1) - %("1,1_“4,/) _U// = (’)1/—'0:/' (l)
Constitutive cquations in }7:

T, = (R, + (U=R)7, 4+ 40, 7 = 6, +5,.
a, = g(f,,+r,,) = 2ue, + A0, e
s, o= 1, ~1,) = 28, )
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Equilibrium equations in I

td
—

T,+b,=0,,+5,,+b, =0, ¢, ti+c, =0 {

Stress boundary conditions on S, :

TN =1, (4

Displacement boundary conditions on S

7
—

u, = d. (

The foregoing equations apply if the presence of the couple stresses m,, is neglected. The
variational treatment is extended to that case in the Appendix.

For completeness, and to facilitate correlation with other references, eqns (1—(35) arce
restated below in direct (index-free) tensor notation

7=Vu-l0=c+ao—-0=c+¢.

w = HV =V u = skew (Vu),

e = {V+VHu = symm (Vu) = symm y.
p=w-0=5V-VHu-0=skew (Vu—0) = skew y,
= (p+r)y+(u—r)y +iltracey = a +5. & in i (6)
g =symmzt = 2ue+ il truce y,
s = skew t = 21 ¢,

divet+b = div (6+s)+b =10,

2axial t+ce =0,

Here an underlined bold symbol denotes a second order or higher tensor. This convention
is used to distinguish tensors from their vector;matrix representations introduced in Section
2.1. No such distinction is needed for vectors such as u.

2. NOTATION

2.0 Muatrix notation

To facilitate the construction and manipulation of variational matrix expressions,
stresses and strains will be arranged as column vectors constructed from the respective
tensors. The arrangement rules vary according to the symmetry properties and are best
illustrated by specific examples.
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For symmetric stress and strain tensors:

a1 ) (e )

722 €

Gy 012 043 033 €1y €2 €3 €5
6=|0,, 0, O0n|S0= . fooe=|e, e ey Ee=<3e33 r (N

O3 O3 O3 . €13 €23 €33 2,

g1 L2e2)

where 6,, = 0,y and ey, = e;,. The factor of 2 in e maintains the equivalence of the stress—
strain inner products: cf. (12) below.
For antisymmetric (skew) stress and strain tensors:

0 S S 32 0 b bis 214
$s=|-5, O s|Es=9gsup. @=( -2 0 P | =P =123
-5y —sn 0 Si2 ¢y —ps 0 2¢,;
®)
0 0[: Ul.‘ 2(}:_\ 0 Wy Wy, 2(1)2;
0=| -0, 0 0,,|=0=420,;. @=|-wm, 0 wyn | E@ =120,
-0,y =0,, 0 20,4 -y —wy 0 2y,

)]
where s, = —s,, and ¢y, = —¢,,. The factor of 2 applics only to kincmalic skew
(rotational) tensors, and again maintains inner product equivalence ; ¢f. (12) below.

For general (unsymmetric) stress and strain tensors:
r.
rruw /||W
Ty 72
T3 73
Ty T Ty T2y 7 Vi 7o 723
T=11Ty Ty Ty Et:ﬁ T3 ? Y=1yn 70 yn|=¥r=4 70 - (10)
Ty Ty Ta T2 73t T2 Tn 712
T32 7.\2
Tys 713
T2 ) I,

With these conventions operations between tensors of equal type can be easily trans-
lated to matrix form. For example, the inner products

oie=0,c,=a'c, sip=s5,0,=59. (1)

Problems arisc, however, in combining different types. For example, t = o+s is an in-
consistent matrix operation because vectors o and s have different dimensions. This difficulty
can be circumvented by introducing “uncompressed™ versions, in which components of
symmetric and skew tensors are arranged as general tensors :

SAS 29:22-C
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(o) 0 6’”1 0
O- 0 €1n 0
O 1 0 €4y 0
G:3 S €2 &5
=<0y . fs=< sy 0 *e=< ey o *P=< ¢y, & (12)
G- S G é1>
013 -85 ¢ — ¢
031 =Sy €3 — ¢
L0 LT LUDJ L_(bllj

Furthermore, t = *r and y = *y. thus no distinction is needed there. This convention will
let us consistently expand expressions such as the inner product of total stresses and strains:

L =Ty =(*+%) (*e+*p) = a'e+s'p.

2.2, Matrix form of yoverning equations
Using the matrix notation of Section 2.1, field equations (1)-(3) may be represented

as follows

Strain-displacement equations

(13)

y="e+%p, ¢=Du, ¢=w~0=Ru-0. (14)
Constitutive cquations ;
T="g+%, a=VFe, s=Gao. (15)
Equilibrium cquations :
D'a+R's+b=0, 2s+¢=0. (16)
In the above equations,
[ dfdx, 0 0 7
0 2l0x, 0
0 0 v oo dln 0
D=1 aiox, e, 0 R= 0/?&4} _Ug' i _(':/;M an
0 dicxy ¢jix,
| /iy 0 /Cx, J
are the symmetric gradient and curl operators, respectively, in matrix form, and
[ A+2u i 1 0 0 0]
I A+ 2u i 0
m i A+210 0 oo
E = 0 0 0 b G=x|0 | 0} (18)
0 0 0 O u 0 0 01
. 0 0 0 0 0 u|

In the sequel E and G are not restricted to these isotropic forms but can be arbitrary non-

singular symmetric matrices. This allows anisotropy in the constitutive equations, subjected

however to the restriction that the pairs (0. e) and (s.y) remain constitutively uncoupled.
For future use, introduce the constitutive matrix C that relates t to y:
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E 0
t = Cy, C=[0 G]' 19)

2.3. Reduction to classical elasticity

Micropolar elasticity reduces to classical linear elasticity if the coupled body force ¢
vanishes. If so, the second equilibrium equation 2s+c¢ =0 shows that s =0, and
1 =g+s =0 is symmetric. Under the assumption that G is non-singular, the second
constitutive equation in (16) gives ¢ =G 's=0, and y=e+¢ =e is symmetric.
Furthermore, 8 = w, that is, microrotations and continuum-mechanics rotations coalesce.

2.4. Field dependency

For the investigation of variational methods in Sections 3 and 4, the field-dependency
notational conventions used by Felippa (1989a. b, c. 1992) and Felippa and Militello (1989,
1990) are followed. An independently varied field will be identified by a superposed tilde,
for example 4. A dependent field is identified by writing the independent field symbol as a
superscript. For example, if the displacements are independently varied, the derived sym-
metric strain and stress fields are

¢* = Dil. o = Ee* = EDd. (20)
Using this convention, tildeless symbols such as u, ¢ and @ are reserved for the exact or
generic fields. If a symbol derives from two independently varied fields, both fields appear
as superscripts : for example ¢ = Ri—0.
2.5. Integral abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted
parentheses and brackets, respectively, around the integrand. For example:

(/‘)V“—i"ﬁfdv. [f]s"é'ﬁde. /15, € J /ds. [f].s«,"=°"£de. (21)

If fand g are vector functions, and p and q tensor functions, their inner product over V'is
denoted in the usual manner:

(f.g)y“érj fig:dV = Lfrng, (p,q)y‘i—“-"ﬁpuq./dV= j pqdv. (22)
v 1’4

and similarly for surface integrals, in which case brackets are used.

3. GENERALIZED STRAIN ENERGY FOR CLASSICAL ELASTICITY
The method used to construct parametrized micropolar variational principles in Section
4 represents a generalization of the corresponding principles of classical linear hyper-
elasticity, which are summarized in this section. These principles have the general form
MN=U~P (23)
Here Uis the generalized strain energy, which characterizes the stored energy of deformation

and P is the forcing potential, which characterizes all other contributions. The conventional
formof Pis

P = (b,d), +[i—d.d,]5,+[t uls, (24)

where o, = 6'n, n being the unit external normal on S. The other two forms of P, called
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P* and P' for displacement-generalized and traction-generalized, respectively. are studied
by Felippa (1989a.b.c). These (mesh-dependent) forms are of interest in hybrid finite
element discretizations. As the forcing potential is not affected by parametrization, attention
will be focused on U.

For a compressible matenial, the generalized strain energy introduced in Felippa and
Militello (1989, 1990) has the following structure:

U=14,06.€)+/26.8) +/1(6.€") + (6 €)s + /1a(0°, ) + L1 (0% €%),.

9
L
—

where j,, through j,; are numerical coeflicients. The three independent fields are stresses 4.
strains € and displacements @. Following the matrix notational conventions stated in Section
2.4 the derived fields that appear in (25) are

o =E¢ o =EDu. ¢ =E 'é6. ¢ =Du. (26)

As an example, the U of Hu-Washizu's functional is obtained by settingj,, = ~ 1,/ = 1.
J»» = L. all others being zero:

Uny(6.8.0) = Yo' &)y + Ha.e"—8) 4+ o' —a" e7), = U &), +(d.¢"=8),. (27)

Equation (25) can be rewritten tn matrix form as

| a)rl sl Jo:b e
UZZJ: s /2.l /3;‘ ¢ dlb, (28)
a’ symm, Sl Le”

where T denotes the 6 x 6 1dentity matrix. The functional-generating symmetric matrix

Joo S Jn
d=1jy ju Jn (29)
Sy Ja Jn

ts scen to fully characterize (25) and consequently, once the forcing potential P ois
selected, the functional (23). (To justify the symmetry of J note, for example, that
Ji3(@. e = Yi(d. )+ 115(e7. 6"),, ele)

On replacing (26) into (28). U may be expressed in terms of the three independent
fields as

S G N I R N S A
U= ’,)J‘ ¢ Jial :3[; JjED érdV. (30)
e Lt e juntep]
Using (30) the first variation of U may be presented as
= (Ac. (50'*)"‘+'(AO', (Sé),,—(div a’l'(sﬁ)y.{»[a;‘éﬁ]s‘ (3‘)

where
Be = ji € +1:8+ /1" A0 =16+ j1:0°+ 16" 0 = j3d+ )60+ 0" (3D)

The last term in (32) combines with contributions from the forcing potential variation.
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For example, if P is the conventional forcing potential (24), the complete variation of
M=U-Pis

ST = (Ae.36),+(Aa.38), — (div o’ +b.0d), +[o, — L. s — [i—d.06,]5,.  (33)

Using P! or P*' does not change the volume terms. Consequently the Euler equations
associated with the volume terms of the first variation

Ae=0, Ac =0, dive'+b=0 34)

are independent of the forcing potential. For consistency of the Euler equations with the
field equations of classical elasticity one must have Ae = 0. Ac = 0 and ¢’ = ¢ if the assumed
stress and strain fields reduce to the exact ones. Therefore

Jutiztin=0. jo+jn+jn=0, jotin+tin=L (35)

Because of these constraints, the maximum number of independent parameters that define
the entries of matrix J is three, The specialization of these functionals to conventional and
paramctrized forms is discussed by Fclippa and Militello (1989, 1990).

Insofaras E~ ' appears in (30), this development is valid only for compressible elasticity.
Extensions of this variational principle to cover incompressibility are discussed by Felippa
(1992).

4. GENERALIZED STRAIN ENERGY FOR MICROPOLAR ELASTICITY

For a micropolar clastic material without couple stresses the variational principle is
structurally similar to (23):

n"l = UIII - PI"‘ (36)

where U,, now also depends on 8, ¢ and 0, and P, may be P,
generalization of U to U, is postulated :

P or P.,. The following

(6] [Jnle Jule Jule 0 0 0] (¢

L Jiale  Jule  Jule 0 0 0 é
U =1f< 7Ll bl 00 00 e L o)
KO N I 0 0 0 by Jjushy o Juels ¢ .

s* 0 0 0 by Jsshy Jsels ¢

\S""J L 0 0 0 Jasls  Jsels jeleJ L¢uu

where I, and I; denote the identity matrices of order 6 and 3, respectively, and the new
derived fields are

¢ =G"'s, s*=Gp. ¢’ =Ria-0, s =G¢*” =G(Ra-0). (38)
The block structure of the kernel matrix in (37) results from the inner product orthogonality
(14) of symmetric and antisymmetric tensors. The symmetry of the j coefficients is an
assumption that remains to be verified.

On substituting (3§) and £26) into (37). U, isexpressed in terms of the six independently
varied fields 6, €, 4, §, ¢ and 0:
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s r—/'nE;l Jizle JiD 0 0 0 ] -
(‘f Jils JE J:ED 0 0 0 f
€ A AT . . . .
P juD" jD'E  j,D'ED  j,R" jR'G —jusR'G ﬁ 1
U et +/,-RTGR M ha
mo2hts . : . _ s 107
- -~ 0 0 JiR JuG gl —Jaols i!
¢ : : : : é |
i JseGR o jushy G =56 |
A : . , 4
- Y 0 ~/osGR —Jsslv =56 JeuG g

The kernel matrix in the above quadratic form must be symmetric. a condition that verifies
the symmetry assumptions in (37). As for the forcing poential, the conventional form
changes to

Po= (b + e )y +[i—d g, +[ta]y, = P+ 1c.0), +[i—d.s, ],  (40)

Similarly. the generalized forcing potentials Py, and P}, are obtained by augmenting P and
P*, respectively, with e, @), + [ —d.s]Sy. [The §in the ¢ term ariscs from the presence of
factor 2 in the definition (9) of the microrotation vector 0.]

The first variation of U, 1s

U, = (Ae,d6), +(Aa,58), —(D'a" +R's, 50),
+ (AP, 55), + (85, 0¢), — (s, 80), + [0, +5,, 00,y (41)

where Ae, Ao and o are the same as in (32), and

)

A¢ =j44¢‘+j4s(5+j‘4¢.¢“”~ As :j45§+j555" + /568" C) =j4(s§ +j565d) ‘f‘;/.(.rssm’- (42)

Note that (D'e’+R's") = dive +divs = div 1, where ' = *¢’ +*s’. The first variation
of M, =U,— P is

OI,, = (Ae,d6), +(Aa,08), — (div ' +b,0lt), + (A, I5),
+ (A5, 09), — (28 +¢,00), +[r, —t, i)y —[G—d,5%,]y,. (43)

a4

Following the sume argument as in Section 3, it is found that consistency with the field
equations requires, in addition to (35), that

Jaatjas+jie =0, Jast+/sstjse =0, JaotSse+jse = 1. (44)
It follows that the parametrized functional of micropolar elasticity
nm = Um(&' é'ﬁ' §’ ¢' 0)—1)"" (45)

depends on 12—6 = 6 free parameters through U,. Specific instances of (45) are char-
acterized by the functional-generating symmetric matrix
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—jll jlz j|3 O 0 OW
Jiz J2 o ju 00 0
Jis JuoJis 00 0
I = 0 0 0 Jui Jas Jae 49)
0 0 0 Jis Jss Jse
L0 0 0 i Jss Jes ]

subjected to the six constraints (35) and (44). The non-zero 3 x 3 blocks in J,, characterize
weightings for symmetric and antisymmetric fields. respectively, and one is free to “mix or
match”. For example,

0]
0

—

(47

S O O O
(=R e I - N ]

L O ]
represents the choice of the Hu-Washizu principle for both symmetric and antisymmetric
fields.

The variational principles of Reissner (1965) and Hughes and Brezzi (1989) will be
now examined in light of the preceding developments,

5. NON-POLAR FUNCTIONALS WITH INDEPENDENT ROTATIONS

5.1. The Reissner functionals

Reissner (1965) proposed a functional of Hellinger-Reissner type for classical (non-
polar) elasticity (¢ = 0) in which u, T and 0 are to be treated as independent fields. In this
functional the stress symmetry condition s = 0 appears as a weak condition with @ playing
the role of multiplier. In the present notation the functional, herein called Iy, =
Ug, — P&, can be written as

Un = —¥6,E7'6), + (& Vi—0),, Py = P*+[i—d,5,]y, (48)

where Vu is the gradient of the displacement vector. Expanding inner products, noting that
' (Vu—0) = t'y*? = (*a +*s)"(*e“ + *¢*?), and making use of (13) yields

Ur) = —1(d,€°), +(d,¢"), + 5, 90),
= —%(&'e")y-{»-é(&,e“)y+§(&“'é)y+%(§, ¢“U)V+§(su0-$)v- (49)
This corresponds to taking

T—1 01t 0 0 0]

0O 0 0 0 0 O

l 0 0 0 0 O
=19 000 0 1 (50)

0 0 0 0 0 O

L0 00 1 0 O]

It can be seen that the first consistency condition in (44), namely j 4+ /45 +/46 = 0, is violated.
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Consequently [1g, is not a valid functional for micropolar elasticity. Inspection of (30)
reveals that conditions (44) can be met by simple changing j,, to — |, and that s precisely
the regularization of Hughes-Brezzi described tn Section 5.2.

Reissner also proposed a second functional [y, = {'z.— P, of Hu-Washizu tvpe, in
which

W& ER), +(d.e" =), +(3.9" — §),
%(G(. é)+ %(&. e“ —‘é)L + %(a‘l —dl'~eﬂ)‘ + £(§. ¢“” —$)|+ %(SuH _§o‘¢\)b . (51)

Cr:

which corresponds to the J,, of (47) except that j5;. = 0. Now the second consistency
equation in (44) is violated. Thus this second functional is also inconsistent with micropolar
elasticity, but may be corrected by changing j<s to 1.

5.2, The Hughes—Brezzi functionals

Hughes and Brezzi (1989) investigated the possible upphication of the Reissner func-
tionals to construct finite clements with “drilling” degrees of freedom for classical elasticity.
Their analysis shows that the first Reissner functional would lead to wnstable discrete
approximations. The physical cause of this instability is that deviations from stress sym-
metry do not produce strain energy. To circumvent that difficulty, they proposed stabilizing
Uk by adding a penalty-like term of the form

|
‘2,\.(5';); (52)

where £ > 0 1s a pscudo-modulus with dimensions of stress (in their paper this modulus is
called 3, a symbol used here for total strain). Although £ plays the same role as wx in the
micropolar theory, for the intended application it is a fictitious quantity to be chosen by
numerical experiments. The term (52) can be encompassed in the present framework by
choosing G = £1, which allows that term to be written us — (3, ¢),. Adding this to Uy,
yields the first Hughes-Brezai functional :

~ & C ')y + (£ Va—0),
—Ha. e — 13 @) + 1A )+ Mo &)+ LG ) + L )y (53)

Ui

This befits the form (37) with the generating matrix

= S4
o 0 00 -t 0 1| 4

whose coeficients satisfy (35) and (44). Thus the stabilization procedure has also the effect
of rendering the functional consistent with micropolar elasticity. _
For the second Reissner functional, the stabilization term added to Uy, is Hs”. @),
which effectively transforms the first term in (51) from (&, E&), to (7. C9),-. The resulting
J.. 15 (47).
An obvious generalization of this “repeating block™ rule 1s
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[ jiz jis 00 01
Jiz Ja o Ju 0 0 0
Jis JavoJis 0 0 0
0 0 0 Jju jiz Jn
0 0 0 Jji: Ja Ju

_0 0 0 Jjis Jus J33 ]

with the coefficients satisfying (35). This three-parameter family permits symmetric and
antisymmetric stress and strain fields to be merged into total stresses and strains. The
resulting functionals IT(. 7. . §) may be viewed as having at most four independent fields.
Note, however, that this choice is but a special case of (46).

5.3. A two-field functional
The simplest generating matrix with the block structure (55) is

'O 0 0 0 0 0]
0 0 00
01 00
=10 00 0 0 (56)
00 0 0 0
00 0 0 0 1]
The resulting two-ficld functional is [T, = U, ~ P*, with
Un(@ 0) = §(@".¢")y + 1", ™). (57)

This may be viewed as a generalization of the minimum potential energy functional, to
which it reduces if the second term is dropped. [t can be obtained from a4 more general
functional for elastoplasticity proposed by Atluri (1980), who recommends taking £ = 4
ins* = £¢". Hughes and Brezzi (1989) also investigated the functional (57) but made no
recommendation on K.

6. CONCLUSIONS

The functional [1,, = U, — P, extends the parametrized functional [T = U~ P of classi-
cul lincar hypercelasticity to include three more independently varied antisymmetric fields
skew stresses, skew strains and microrotations. This extension is made here in the context
of micropolar elusticity without couple stresses.

Another application of these functionals is the construction of finite element inter-
polations for classical lincar clasticity in which the rotational field 8 is varied independently
from the displacements. The objective is to relax stress symmetry into a weak condition. It
is in this context that the functionals of Hughes-Brezzi have been proposed. A membrane
clement with drilling freedoms based on these functionals has recently been constructed by
Ibrahimbegovic (1990). The present study indicates that the Hughes-Brezzi functionals
fit the framework of micropolar clasticity if fictitious modulus £ is identified with the
micropolar modulus «.

The Hughes-Brezzi functionals can be readily generalized into a three-parameter family
detined by (55). in which the same weighting is applied to symmetric and antisymmetric
ficlds. Howcver this is just a subspace of the six-parameter functional (45) characterized by
the J,, matrix (46). which allows such weights to be separately chosen.
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APPENDIN: PARAMETRIZED FUNCTIONAL FOR A MICROPOLAR MEDIUM WITH
COUPLE STRESSES

In this Appendix the preceding variational formuliation s extended to account tor the presence of couple

stresses i, Two changes i the field equations oceur. The angular-momentunt equilibrium cquation gains a
divergence term

[ S R S (AL)

The constitutive cquations must be augmented by o relation between the couple stresses und nucrorotation vector
dervatives, which for the isotropic case is

T SO RN 5 N U . STV (A)

Here ny, ny and 7, are constitutive coetlicients with dimension of foree, and for compactness we have used the
micrarotational vector components {1, = 20, 6, = 26, und #, = 20, in accordance to the convention of eqn
(9). The gradients ot 0, will be denoted by x,, = @, which may be interpreted as “curvatures™.

In addition, the boundury conditions (4) (5) are augmented with
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where 508,05,
Next, define the vectors and matrices
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in which 7y = 7, + 7.+ 7, Matrix H can be generalized to account for anisotropy without difficulty. Little is
known experimentally about couple stress constitutive behavior, however. even in the isotropic casce.
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With the foregoing definitions. the matrix field equations that include the effect of the couple stresses are
t=Q8, m=Hy. Q'm+2s+c=0 (AS)
The first two are appended to the kinematic refations (14) and constitutive equations (13), respectively, whereas
the latter replaces the second of (16).
A parametrized vanational principle that accounts for couple stresses is easily obtained by including two
independently varied fields: couple stresses it and curvatures §. Functionals U, and P are augmented with
couple stress terms

U, =U.+U.. PL,=P.+P. (A6)

where
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The derived fields in (A7) are m* = Hi.x" = H™ 'm. " = Q@ and m” = HQO; also I, denotes the 9 x 9 identity
matrix.
The first variation of I, = U, + Ph, 18

ST, = (Ae.06), + (Ad.3&), — (Rt +b.Ja), + (Ad.53),
+(88.68), — HQ M + 25" +¢. ), + [r, ~ L. di],

~[6-d.0%,]5, +[m, - w.5d|; —~[0-0.6m,],. (A9)
where m” = frgt + feam® + j,om”. The consistency conditions are (36), (45) and
Frrt St s =00 jatiat i =00 jratfetja =L (A10)

It is seen that extending the variational principle (45) to accommodate couple stresses brings three addinonal free
parameters, for e total of nine, This may be reduced to three tree parameters, however, by extending the rule (55)
with another 3 x 3 repeating block. Note that i one chooses j,, = [, others zero, U, = {OTQ HQA),., and no
additiona] independent ficlds other than those in (45) appeur.

The couple-stress theory of clasticity attracted theoretical attention in the 1960s but it is rarely used in practice,
particularly in static situations. For modeling micropolar and oriented media the simpler equations of Section |
are more common, This is especially true in homogenization of filamentary composite materials, where the body
couple ¢ and the micropolir modulus x can be estimated from component-level non-polar data complemented by
statisticul and periodicity arguments [see for example, Berglund (1977)).

Although couple stress models can be generated in the continuum limit of regular and defective-lattice
theories [see for example, Askar (1985)], the difficulties in characterizing and measuring moduli such as =y, n,
and #, are significant, and the theory has to be regarded as experimentally inconclusive. Furthermore the additional
boundary conditions (A3) are not eusily interpreted physically. Consequently the main development of the paper
focuses on the zero-couple-stress case. This hus the additional advantage that the reduction to the classical non-
polar case for finite element development is casily accomplished.



